Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 46,
  • Issue 4,
  • pp. 631-639
  • (1992)

Pre-Excitation, Catalytic Oxidation of Analytes over Hopcalite in Flame/Furnace Infrared Emission (FIRE) Spectrometry

Not Accessible

Your library or personal account may give you access

Abstract

Gas-phase infrared emission measurements made with the use of a new, specially designed, electrically heated furnace or a small hydrogen/air flame have shown that oxidation of a variety of carbon-based analytes to CO<sub>2</sub> over the catalyst hopcalite prior to vibrational excitation in the furnace or flame markedly improves the response of the FIRE radiometer. Calibration curves obtained with the use of the furnace alone were generally nonlinear, while those obtained with the flame alone had slopes that were compound dependent. By the use of hopcalite in conjunction with the furnace, conversion to CO<sub>2</sub> was significantly improved, and the FIRE response to pure acetone, benzene, dichloromethane, 1-chloro-2-methylpropane, heptane, methanol, and toluene became directly proportional to the number of moles of carbon introduced. In the case of the flame, as little as 0.1 g of hopcalite was sufficient to give a single, linear calibration curve (based on moles of carbon) for injection volumes of 0.2-1.0 μL of a test mixture composed of equal volumes of acetone, benzene, hexane, propanol, and tetrahydrofuran. With the use of hopcalite at its experimentally determined, optimum operating temperature of 380°C, an air flow rate of 45 mL min<sup>−1</sup> and a furnace temperature of 600°C, the detection limit for hexane was found to be 518 ng C s<sup>−1</sup>. The use of hopcalite in conjunction with the flame (900°C) improved this detection limit by two orders of magnitude, due to the combined effects of an increase in excitation temperature and a decrease in source background noise. Injection of chlorinated compounds was found to temporarily poison the hopcalite, resulting in soot formation and loss of catalytic activity for periods of approximately ten minutes.

PDF Article
More Like This
The Application of Separated Flames in Analytical Flame Spectroscopy

G. F. Kirkbright and T. S. West
Appl. Opt. 7(7) 1305-1311 (1968)

Emission Spectra Excited in Metal Powder–Oxygen Flames*

Rudolph Edse, K. Narahari Rao, W. A. Strauss, and M. E. Mickelson
J. Opt. Soc. Am. 53(4) 436-438 (1963)

Atomic Emission Characteristics of a Premixed Acetylene–Nitrous Oxide, Total Consumption Flame

Victor G. Mossotti and Marjorie Duggan
Appl. Opt. 7(7) 1325-1330 (1968)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.