Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 57,
  • Issue 7,
  • pp. 744-752
  • (2003)

Mars Analysis by Laser-Induced Breakdown Spectroscopy (MALIS): Influence of Mars Atmosphere on Plasma Emission and Study of Factors Influencing Plasma Emission with the use of Doehlert Designs

Not Accessible

Your library or personal account may give you access

Abstract

A project called MALIS (Mars Analysis by Laser-Induced breakdown Spectroscopy) is under progress to perform <i>in situ</i> analysis of Mars soils and rocks. This paper reports on the behavior of plasma in Martian conditions, i.e., in a CO<sub>2</sub> atmosphere at pressures between 5 and 12 mbar. Plasma expansion and lifetime have been studied in order to compare plasma evolution under standard conditions (air at atmospheric pressure) and in a Mars atmosphere. We have shown that the Mars environment favors plasma expansion and lifetime. The second part of the study concerns optimization of the emission signal from the plasma. An original approach has been chosen, as we used a Doehlert design for the first time in laser-induced breakdown spectroscopy (LIBS). The best conditions obtained are for a laser wavelength of 1064 nm with the maximum energy available due to space limitations, which is 40 mJ at 15 Hz. The other factors studied are delay, angle of incidence, and CO<sub>2</sub> pressure. We have shown that these factors do not have the same influence depending on which spectroscopic line is used, i.e., the atomic line or the ionic line.

PDF Article
More Like This
Examining natural rock varnish and weathering rinds with laser-induced breakdown spectroscopy for application to ChemCam on Mars

Nina L. Lanza, Samuel M. Clegg, Roger C. Wiens, Rhonda E. McInroy, Horton E. Newsom, and Matthew D. Deans
Appl. Opt. 51(7) B74-B82 (2012)

Calibrating the ChemCam laser-induced breakdown spectroscopy instrument for carbonate minerals on Mars

Nina L. Lanza, Roger C. Wiens, Samuel M. Clegg, Ann M. Ollila, Seth D. Humphries, Horton E. Newsom, and James E. Barefield
Appl. Opt. 49(13) C211-C217 (2010)

Quantitative analysis of Fuller’s earth using laser-induced breakdown spectroscopy and inductively coupled plasma/optical emission spectroscopy

I. Rehan, M. Z. Khan, K. Rehan, S. Sultana, M. U. Rehman, R. Muhammad, M. Ikram, and H. Anwar
Appl. Opt. 58(16) 4227-4233 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.