Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 49,
  • Issue 1,
  • pp. 60-66
  • (1995)

Total Lifetime Distribution Analysis for Fluorescence Fingerprinting and Characterization

Not Accessible

Your library or personal account may give you access

Abstract

A new technique, total lifetime distribution analysis (TLDA), is described for rapid, sensitive, and accurate lifetime characterization of complex samples. Multiharmonic Fourier transform technology in a commercial, frequency-domain fluorescence lifetime instrument allows rapid acquisition of TLDA data. High sensitivity derives from the use of the entire fluorescence emission from the sample in the lifetime measurement. The maximum entropy method (MEM) provides a consistent basis for modeling of the lifetime data for accurate recovery of the total lifetime distribution of the sample. Because MEM is self-modeling, it is not subject to the same sources of bias that influence nonlinear least-squares fits of lifetime data to <i>a priori</i> models. These features make TLDA an effective tool for sample characterization and fingerprinting that is based on the responsiveness of fluorescence lifetime to the chemical composition and dynamic processes that contribute to the uniqueness of the sample. TLDA results are presented for coal liquids and a humic substance. The effect of signal intensity on lifetime recovery is investigated, and comparison is made between MEM and conventional nonlinear least-squares for data analysis.

PDF Article
More Like This
Formulation and implementation of a phase-resolved fluorescence technique for latent-fingerprint imaging: theoretical and experimental analysis

U. S. Dinish, Z. X. Chao, L. K. Seah, A. Singh, and V. M. Murukeshan
Appl. Opt. 44(3) 297-304 (2005)

Fluorescence lifetime imaging and spectroscopy as tools for nondestructive analysis of works of art

Daniela Comelli, Cosimo D’Andrea, Gianluca Valentini, Rinaldo Cubeddu, Chiara Colombo, and Lucia Toniolo
Appl. Opt. 43(10) 2175-2183 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.