Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Rapid detection of cellulose and hemicellulose contents of corn stover based on near-infrared spectroscopy combined with chemometrics

Not Accessible

Your library or personal account may give you access

Abstract

The feasibility of near-infrared spectroscopy (NIRS) combined with chemometrics for the rapid detection of the cellulose and hemicellulose contents in corn stover is discussed. Competitive adaptive reweighted sampling (CARS) and genetic simulated annealing algorithm (GSA) were combined (CARS-GSA) to select the characteristic wavelengths of cellulose and hemicellulose and to reduce the dimensionality and multicollinearity of the NIRS data. The whole spectra contained 1845 wavelength variables. After CARS-GSA optimization, the number of characteristic wavelengths of cellulose (hemicellulose) was reduced to 152 (260), accounting for 8.24% (14.09%) of all wavelengths. The coefficients of determination of the regression models for predicting the cellulose and hemicellulose contents were 0.968 and 0.996, the root mean square errors of prediction (RMSEPs) were 0.683 and 0.648, and the residual predictive deviations (RPDs) were 5.213 and 16.499, respectively. The RMSEP of the cellulose and hemicellulose regression models was 0.152 and 0.190 lower for CARS-GSA than for the full-spectrum, and the RPD was increased by 0.949 and 3.47, respectively. The results showed that the CARS-GSA model substantially reduced the number of characteristic wavelengths and significantly improved the predictive ability of the regression model.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Rapid detection of carbon-nitrogen ratio for anaerobic fermentation feedstocks using near-infrared spectroscopy combined with BiPLS and GSA

Jinming Liu, Nan Li, Feng Zhen, Yonghua Xu, Wenzhe Li, and Yong Sun
Appl. Opt. 58(18) 5090-5097 (2019)

Rapid detection of talc content in flour based on near-infrared spectroscopy combined with feature wavelength selection

Changhao Bao, Changhao Zeng, Jinming Liu, and Dongjie Zhang
Appl. Opt. 61(19) 5790-5798 (2022)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.