Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Identification of the interference spectra of edible oil samples based on neighborhood rough set attribute reduction

Not Accessible

Your library or personal account may give you access

Abstract

Due to numerous edible oil safety problems in China, an automatic oil quality detection technique is urgently needed. In this study, rough set theory and Fourier transform spectrum are combined for proposing a digital identification method for edible oil. First, the Fourier transform spectra of three different types of edible oil samples, including colza oil, waste oil, and peanut oil, are measured. After the input spectra are differentially and smoothly processed, the characteristic wavelength bands are selected with neighborhood rough set attribution reduction (NRSAR). Moreover, the classification models are established based on random forest (RF) and extreme learning machine (ELM) algorithms. Finally, confusion matrix, classification accuracy, sensitivity, specificity, and the distribution of judgment are calculated for evaluating the classification performances of different models and determining the optimal oil identification model. The results show that by using the third-order difference pre-processing method, 193 wavelength bands in the visible range can be reduced to 10 characteristic wavelengths, with a compression ratio of over 88.61%. Using the established NRS-RF and NRS-ELM models, the total identification accuracies are 91.67% and 93.33%, respectively. In particular, the identification accuracy of peanut oil using the NRS-ELM model reaches up to 100%, whereas the identification accuracies obtained using the principal component analysis (PCA)-based models that are commonly used in information processing (PCA-RF and PCA-ELM) are 81.67% and 90.00%, respectively. As compared with feature extraction methods, the proposed NRSAR shows directive advantages in terms of precision, sensitivity, specificity, and the distribution of judgment. In addition, the execution time is also reduced by approximately 1/3. Conclusively, the NRSAR method and NRS-ELM the model in the spectral identification of edible oil show favorable performance. They are expected to bring forth insightful oil identification techniques.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Hyperspectral band selection based on a variable precision neighborhood rough set

Yao Liu, Hong Xie, Liguo Wang, and Kezhu Tan
Appl. Opt. 55(3) 462-472 (2016)

Rapid determination of the main components of corn based on near-infrared spectroscopy and a BiPLS-PCA-ELM model

Lili Xu, Jinming Liu, Chunqi Wang, Zhijiang Li, and Dongjie Zhang
Appl. Opt. 62(11) 2756-2765 (2023)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.