Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Triple-output phase unwrapping network with a physical prior in fringe projection profilometry

Not Accessible

Your library or personal account may give you access

Abstract

Deep learning has been attracting more and more attention in the phase unwrapping of fringe projection profilometry (FPP) in recent years. In order to improve the accuracy of the deep-learning-based unwrapped phase methods from a single fringe pattern, this paper proposes a single-input triple-output neural network structure with a physical prior. In the proposed network, a single-input triple-output network structure is developed to convert the input fringe pattern into three intermediate outputs: the wrapped phase, the fringe order, the coarse unwrapped phase, and the final output high-precision unwrapped phase from the three outputs. Moreover, a new, to the best of our knowledge, loss function is designed to improve the performance of the model using a physical prior about these three outputs in FPP. Numerous experiments demonstrated that the proposed network is able to improve the accuracy of the unwrapped phase, which can also be extended to other deep learning phase unwrapping models.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Depth estimation from a single-shot fringe pattern based on DD-Inceptionv2-UNet

Linlin Wang, Wenke Xue, Chuanyun Wang, Qian Gao, Wenjie Liang, and Yinwen Zhang
Appl. Opt. 62(34) 9144-9155 (2023)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request. The dataset used for training, validation, and testing in this paper are available in Refs. [9,18].

9. C. Zuo, J. Qian, S. Feng, W. Yin, Y. Li, P. Fan, J. Han, K. Qian, and Q. Chen, “Deep learning in optical metrology: a review,” Light Sci. Appl. 11, 39 (2022). [CrossRef]  

18. J. Qian, S. Feng, T. Tao, Y. Hu, Y. Li, Q. Chen, and C. Zuo, “Deep-learning-enabled geometric constraints and phase unwrapping for single-shot absolute 3D shape measurement,” APL Photon. 5, 046105 (2020). [CrossRef]  

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.