Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Baseline correction for Raman spectra using a spectral estimation-based asymmetrically reweighted penalized least squares method

Not Accessible

Your library or personal account may give you access

Abstract

Baseline correction is necessary for the qualitative and quantitative analysis of samples because of the existence of background fluorescence interference in Raman spectra. The asymmetric least squares (ALS) method is an adaptive and automated algorithm that avoids peak detection operations along with other user interactions. However, current ALS-based improved algorithms only consider the smoothness configuration of regions where the signals are greater than the fitted baseline, which results in smoothing distortion. In this paper, an asymmetrically reweighted penalized least squares method based on spectral estimation (SEALS) is proposed. SEALS considers not only the uniform distribution of additive noise along the baseline but also the energy distribution of the signal above and below the fitted baseline. The energy distribution is estimated using inverse Fourier and autoregressive models to create a spectral estimation kernel. This kernel effectively optimizes and balances the asymmetric weight assigned to each data point. By doing so, it resolves the issue of local oversmoothing that is typically encountered in the asymmetrically reweighted penalized least squares method. This oversmoothing problem can negatively impact the iteration depth and accuracy of baseline fitting. In comparative experiments on simulated spectra, SEALS demonstrated a better baseline fitting performance compared to several other advanced baseline correction methods, both under moderate and strong fluorescence backgrounds. It has also been proven to be highly resistant to noise interference. When applied to real Raman spectra, the algorithm correctly restored the weak peaks and removed the fluorescence peaks, demonstrating the effectiveness of this method. The computation time of the proposed method was approximately 0.05 s, which satisfies the real-time baseline correction requirements of practical spectroscopy acquisition.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Baseline correction method based on improved asymmetrically reweighted penalized least squares for the Raman spectrum

Jianfeng Ye, Ziyang Tian, Haoyun Wei, and Yan Li
Appl. Opt. 59(34) 10933-10943 (2020)

Baseline correction method based on improved adaptive iteratively reweighted penalized least squares for the x-ray fluorescence spectrum

Xiaoyu Jiang, Fusheng Li, Qingya Wang, Jie Luo, Jun Hao, and Muqiang Xu
Appl. Opt. 60(19) 5707-5715 (2021)

Baseline correction method based on doubly reweighted penalized least squares

Degang Xu, Song Liu, Yaoyi Cai, and Chunhua Yang
Appl. Opt. 58(14) 3913-3920 (2019)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.