Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Magnetic flux leakage detection based on a sensitivity-enhanced fiber Bragg grating magnetic field sensor

Not Accessible

Your library or personal account may give you access

Abstract

We propose a sensitivity-enhanced fiber Bragg grating (FBG) magnetic field sensor for magnetic flux leakage (MFL) detection. The testing system consists of the FBG, suspended strain concentration structure, and two ceramic tubes bonded on a Terfenol-D base. We show the relation between the MFL and the width and depth of the crack, the lift-off of the sensor away from the surface of the workpiece, and the angle between the orientation of the sensor and the magnetization direction. The experimental results are very consistent with those obtained from finite element analysis simulations. The sensitivity of the sensor is increased to 81.11 pm/mT for increasing magnetic fields and 91.55 pm/mT for decreasing magnetic fields. The MFL test demonstrates that the sensor can identify a crack with a width of 0.5 mm and depth of 2 mm in an 8 mm thick workpiece. To the best of our knowledge, the magnetic field sensor proposed in this work has the highest sensitivity compared with the same types of sensors. Moreover, the application of an FBG-Terfenol-D based magnetic field sensor in the MFL test shows good performance. Compared with traditional electrical MFL testing technologies, the sensitivity-enhanced optical fiber magnetic field sensor has a higher resolution and longer survival time in harsh environments.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Magnetic field sensor based on fiber Bragg grating with a spiral microgroove ablated by femtosecond laser

Yutang Dai, Minghong Yang, Gang Xu, and Yinquan Yuan
Opt. Express 21(14) 17386-17391 (2013)

Flux density measurement of radial magnetic bearing with a rotating rotor based on fiber Bragg grating-giant magnetostrictive material sensors

Guoping Ding, Songchao Zhang, Hao Cao, Bin Gao, and Biyun Zhang
Appl. Opt. 56(17) 4975-4981 (2017)

Characterisation and performance of a Terfenol-D coated femtosecond laser inscribed optical fibre Bragg sensor with a laser ablated microslot for the detection of static magnetic fields

G.N. Smith, T. Allsop, K. Kalli, C. Koutsides, R. Neal, K. Sugden, P. Culverhouse, and I. Bennion
Opt. Express 19(1) 363-370 (2011)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.