Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Wideband dual-polarized linear-circular and linear-cross angular stable THz reflective polarizer based on a modified square loop FSS

Not Accessible

Your library or personal account may give you access

Abstract

A simple wideband reflective type linear-cross and linear-circular polarization converter for terahertz (THz) applications is proposed in this paper. The top frequency selective surface (FSS) consists of a thin gold coated figure of eight square loop with the connected strip line corners on a thin grounded polyamide dielectric substrate. For the $y/x$-polarized incidence, the design exhibits linear-circular conversion with an axial ratio (${\le} {{3}}\;{\rm{dB}}$) from 0.49–0.50, 0.60–0.83, 1.16–1.62, and 1.81–1.85 THz with 2.02%, 32.17%, 33.09%, and 2.19% fractional bandwidth (FBW), respectively. In addition, it also performs the linear-cross conversion with a minimum 90% polarization conversion ratio (PCR) from 0.53–0.56, 0.92–1.07, and 1.69–1.75 THz having 5.50%, 15.08%, and 3.49% FBW, respectively. Multiple plasmonic resonances are the reason behind different polarization conversions and are confirmed with surface current distribution profiles of the FSS and ground. The metasurface’s performance is stable up to 45° for both transverse electric (TE) and transverse magnetic (TM) oblique incidences. The polarizer’s unit cell architecture is compact with structural dimensions of ${0.121} \times {0.121} \times {0.041} \lambda _L^3$, where ${\lambda _L}$ is the lowest operating frequency’s free-space wavelength. The authors believe this design is compact, with angular stable multi-band multi-conversion ability that will significantly impact the THz applications in real time.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies

Yannan Jiang, Lei Wang, Jiao Wang, Charles Nwakanma Akwuruoha, and Weiping Cao
Opt. Express 25(22) 27616-27623 (2017)

Graphene-based metasurface for a tunable broadband terahertz cross-polarization converter over a wide angle of incidence

Vinit Singh Yadav, Sambit Kumar Ghosh, Somak Bhattacharyya, and Santanu Das
Appl. Opt. 57(29) 8720-8726 (2018)

Tunable mid-infrared dual-band and broadband cross-polarization converters based on U-shaped graphene metamaterials

Fang Zeng, Longfang Ye, Li Li, Zhihui Wang, Wei Zhao, and Yong Zhang
Opt. Express 27(23) 33826-33839 (2019)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.