Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Demonstration of a dual-channel two-dimensional reflection grating filter

Not Accessible

Your library or personal account may give you access

Abstract

A dual-channel two-dimensional (2D) reflection grating filter operating around the 1.55 µm wavelength region is demonstrated, exhibiting dual-channel reflection peaks at 1.492 µm and 1.647 µm. The sidebands intrinsic to this kind of grating are suppressed by appropriately designed antireflective thin films, and this can be proved by equivalent medium theory. Using the modal analysis method, the excitation modes of the dual-channel reflection peaks are determined to be the TM0 (1.490 µm) and TE0 (1.638 µm) modes. The estimated relative errors in the wavelength determination of these modes are less than 1%. This is found to be in accord with analyses of the reflectivity spectra and electromagnetic fields. The dual-channel reflection peaks are sensitive to the background refractive index and may be useful in biosensing applications.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Guided-mode resonance-based bandpass filter operating at full conical mounting

Nabarun Saha and Wen-Kai Kou
Appl. Opt. 59(34) 10700-10705 (2020)

Broadening the angular tolerance in two-dimensional grating resonance structures at oblique incidence

Sakoolkan Boonruang, Andrew Greenwell, and M. G. Moharam
Appl. Opt. 46(33) 7982-7992 (2007)

Polarization-independent guided-mode resonance filtering by all-dielectric gratings in the terahertz region

Zhongqiu Zhan, Danyan Wang, Guotao Sun, and Qinkang Wang
Appl. Opt. 59(8) 2482-2488 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.