Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

An inherent-optical-property-centered approach to correct the angular effects in water-leaving radiance

Not Accessible

Your library or personal account may give you access

Abstract

Remote-sensing reflectance (Rrs), which is defined as the ratio of water-leaving radiance (Lw) to downwelling irradiance just above the surface (Ed(0+)), varies with both water constituents (including bottom properties of optically-shallow waters) and angular geometry. Lw is commonly measured in the field or by satellite sensors at convenient angles, while Ed(0+) can be measured in the field or estimated based on atmospheric properties. To isolate the variations of Rrs (or Lw) resulting from a change of water constituents, the angular effects of Rrs (or Lw) need to be removed. This is also a necessity for the calibration and validation of satellite ocean color measurements. To reach this objective, for optically-deep waters where bottom contribution is negligible, we present a system centered on water’s inherent optical properties (IOPs). It can be used to derive IOPs from angular Rrs and offers an alternative to the system centered on the concentration of chlorophyll. This system is applicable to oceanic and coastal waters as well as to multiband and hyperspectral sensors. This IOP-centered system is applied to both numerically simulated data and in situ measurements to test and evaluate its performance. The good results obtained suggest that the system can be applied to angular Rrs to retrieve IOPs and to remove the angular variation of Rrs.

© 2011 Optical Society of America

Full Article  |  PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.