Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Theory and method for large electric field intensity enhancement in the nanoantenna gap

Not Accessible

Your library or personal account may give you access

Abstract

We first investigate the field intensity in the nanoantenna gap as a function of common antenna properties including polarization, input resistance, and gain. This function provides us a method on how to effectively enhance the field intensity. In the case of polarization matched to the incident wave, the nanoantenna should have both large input resistance and high gain in the arrival direction. To meet these demands, the flat feed gap is modified to a bowtie form, and a hemispherical lens is attached to the nanoantenna. Consequently, the relative field intensity in the gap is found to be 2.6×103a.u., which is about 8 times larger than the original value, and they all agree well with the simulations. This research is expected to be used as guidelines for the design of nanoantennas and to promote them in plasmonic applications such as spectroscopy and photodetection.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Periodic plasmonic nanoantennas in a piecewise homogeneous background

Saba Siadat Mousavi, Pierre Berini, and Derek McNamara
Opt. Express 20(16) 18044-18065 (2012)

Direct near-field optical imaging of UV bowtie nanoantennas

Liangcheng Zhou, Qiaoqiang Gan, Filbert J. Bartoli, and Volkmar Dierolf
Opt. Express 17(22) 20301-20306 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.