Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Self-starting ultrafast fiber lasers mode-locked with alcohol

Not Accessible

Your library or personal account may give you access

Abstract

We report a novel saturable absorber (SA) based on anhydrous alcohol for mode-locked fiber lasers (MLFLs). The SA is an optical ferrule with one alcoholic end-facet sealed by a polyethylene (PE) film. Its modulation depth is measured to be 5.9%. Also, a self-starting MLFL using such an alcohol-SA has been demonstrated to generate 972-fs pulses at 1594.6 nm. The single pulse energy is up to 1.8 nJ with the repetition rate of 20.97 MHz, and the signal-to-noise ratio (SNR) is higher than 50 dB. The MLFL exhibits the performance of self-starting, good stability, and high pulse energy. Such a cost-effective and easily-prepared SA with high damage threshold may find wide applications for ultrafast lasers. Besides, it may arouse wide considerations of the mode-locking function of organic liquids for ultrafast lasers.

© 2015 Optical Society of America

Full Article  |  PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.