Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Random spectrally resolved Maker fringes

Not Accessible

Your library or personal account may give you access

Abstract

The Maker fringes technique is extended to the case of nonlinear media with one-dimensional second-order nonlinear susceptibility modulation. For broadband radiation, second harmonic intensity oscillates in both spectral and angular domains, which can be considered random spectrally resolved Maker fringes. A theoretical approach is developed for modeling the second-harmonic generation in such domain structures, and the calculations are in excellent agreement with experimental results.

© 2013 Optical Society of America

Full Article  |  PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.