Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 34,
  • Issue 22,
  • pp. 5340-5348
  • (2016)

Interrogation of FBGs and FBGs Arrays Using Standard Telecom DFB Diode

Not Accessible

Your library or personal account may give you access

Abstract

An efficient fiber Bragg grating (FBG) sensor integration system, which utilizes a small number of standard Telecom opto-electronics components, is presented in this paper. Wavelength-swept optical pulses were generated by driving a standard telecom DFB laser diode by high amplitude (>3 A) and short duration (300 ns) current pulses. A total laser diode's wavelength sweep in excess of 10 nm was achieved, which allows for simultaneous interrogation of several FBGs within similar wavelengths. The application of short duration wavelength-swept optical pulses also allows for time division multiplexing of small FBG arrays containing FBGs with overlapping characteristic wavelengths. When a short, wavelength-swept optical pulse is launched into the fiber containing single or multiple FBGs along its length, fractions of the launched pulse are back-reflected towards the detector. Since the launched pulse wavelength changes over the time, the reflections from the FBGs occur in the time moments that depend on the FBGs’ characteristic wavelengths. Measurement of the time delay among back-reflected optical pulses is then used to determine the FBGs characteristic wavelengths. The experimental system demonstrated FBG wavelength readout resolution, which exceeded 3 pm at 1 KHz sampling rate, maximum sampling rate of over 40 KHz, and capability to readout/demultiplex over 30 FBGs located down a single optical fiber.

© 2016 IEEE

PDF Article
More Like This
Miniature interrogator for multiplexed FBG strain sensors based on a thermally tunable microring resonator array

Fan Yang, Wenjia Zhang, Shuangxiang Zhao, Qingwen Liu, Jifang Tao, and Zuyuan He
Opt. Express 27(5) 6037-6046 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.