Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 34,
  • Issue 2,
  • pp. 573-581
  • (2016)

Iteration-Aware LDPC Code Design for Low-Power Optical Communications

Not Accessible

Your library or personal account may give you access

Abstract

Recent low-density parity-check (LDPC) codes have shown capacity-approaching performance for various communications systems. However, their promising performance cannot always be obtained due to practical constraints, such as finite codeword length, finite iteration, finite memory, and finite precision. In this paper, we focus on a practical design method of high-performance LDPC codes under a constraint of finite-iteration decoding for low-power optical communications. We introduce an iteration-aware LDPC code design approach, which is based on decoding trajectory in extrinsic information transfer chart analysis. It is demonstrated that an LDPC code designed by the conventional curve-fitting method exhibits nearly 2 dB of penalty, when the maximum number of iterations is limited. The results suggest that the LDPC code should be adaptively changed, e.g., when the number of decoding iterations is decreased to save power consumption. We also extend our design method to a multi-objective optimization concept by taking average degrees into account, so that the threshold and the computational complexity are minimized at the same time. The proposed Pareto-optimal codes can achieve additional 2-dB gain or 50% complexity reduction at maximum, in low-power decoding scenarios.

© 2015 IEEE

PDF Article
More Like This
Experimental demonstration of flexible information rate PON beyond 100 Gb/s with rate-compatible LDPC codes

Xiangli Zhang, Yunpeng Xuan, Zepeng Gong, Xu Zhang, Jie Li, Ming Luo, Bowen Jia, Dapeng Luo, Tianye Huang, and Xiang Li
Opt. Express 32(9) 15444-15459 (2024)

Improving reliability using phase distribution aware LDPC code for holographic data storage

Qin Yu, Fei Wu, Meng Zhang, Yahui Zhao, and Changsheng Xie
Appl. Opt. 61(21) 6119-6127 (2022)

Multiple component codes based generalized LDPC codes for high-speed optical transport

Ivan B. Djordjevic and Ting Wang
Opt. Express 22(14) 16694-16705 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.