Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 70,
  • Issue 8,
  • pp. 1346-1355
  • (2016)

13C Solid State Nuclear Magnetic Resonance and µ-Raman Spectroscopic Characterization of Sicilian Amber

Not Accessible

Your library or personal account may give you access

Abstract

13C cross-polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) and µ-Raman spectroscopy were applied to characterize Sicilian amber samples. The main goal of this work was to supply a complete study of simetite, highlighting discriminating criteria useful to distinguish Sicilian amber from fossil resins from other regions and laying the foundations for building a spectroscopic database of Sicilian amber. With this aim, a private collection of unrefined simetite samples and fossil resins from the Baltic region and Dominican Republic was analyzed. Overall, the obtained spectra permitted simetite to be distinguished from the other resins. In addition, principal component analysis (PCA) was applied to the spectroscopic data, allowing the clustering of simetite samples with respect to the Baltic and Dominican samples and to group the simetite samples in two sets, depending on their maturity. Finally, the analysis of loadings allowed for a better understanding of the spectral features that mainly influenced the discriminating characteristics of the investigated ambers.

© 2016 The Author(s)

PDF Article
More Like This
Nuclear magnetic resonance imaging

William P. Rothwell
Appl. Opt. 24(23) 3958-3968 (1985)

Electro-mechano-optical detection of nuclear magnetic resonance

Kazuyuki Takeda, Kentaro Nagasaka, Atsushi Noguchi, Rekishu Yamazaki, Yasunobu Nakamura, Eiji Iwase, Jacob M. Taylor, and Koji Usami
Optica 5(2) 152-158 (2018)

Optical nuclear magnetic resonance: theory, simulation, and animation

Myron W. Evans and Chris R. Pelkie
J. Opt. Soc. Am. B 9(7) 1020-1029 (1992)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.