Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 59,
  • Issue 9,
  • pp. 1182-1187
  • (2005)

Identification of Recently Handled Materials by Analysis of Latent Human Fingerprints Using Infrared Spectromicroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Analysis of fingerprints has predominantly focused on matching the pattern of ridges to a specific person as a form of identification. The present work focuses on identifying extrinsic materials that are left within a person's fingerprint after recent handling of such materials. Specifically, we employed infrared spectromicroscopy to locate and positively identify microscopic particles from a mixture of common materials in the latent human fingerprints of volunteer subjects. We were able to find and correctly identify all test substances based on their unique infrared spectral signatures. Spectral imaging is demonstrated as a method for automating recognition of specific substances in a fingerprint. We also demonstrate the use of attenuated total reflectance (ATR) and synchrotron-based infrared spectromicroscopy for obtaining high-quality spectra from particles that were too thick or too small, respectively, for reflection/absorption measurements. We believe the application of this rapid, nondestructive analytical technique to the forensic study of latent human fingerprints has the potential to add a new layer of information available to investigators. Using fingerprints to not only identify who was present at a crime scene, but also to link who was handling key materials, will be a powerful investigative tool.

PDF Article
More Like This
Polarization-based and specular-reflection-based noncontact latent fingerprint imaging and lifting

Shih-Schön Lin, Konstantin M. Yemelyanov, Edward N. Pugh, Jr., and Nader Engheta
J. Opt. Soc. Am. A 23(9) 2137-2153 (2006)

Latent fingerprint residue detection method using Sagnac Fourier transform imaging spectroscopy

Xueqiong Bai, Wenming Yang, Weitao Song, and Ningfang Liao
Appl. Opt. 60(19) 5534-5539 (2021)

Supercontinuum-based Fourier transform infrared spectromicroscopy

F. Borondics, M. Jossent, C. Sandt, L. Lavoute, D. Gaponov, A. Hideur, P. Dumas, and S. Février
Optica 5(4) 378-381 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.