Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 57,
  • Issue 4,
  • pp. 419-427
  • (2003)

Optimizing Detection Sensitivity on Surface-Enhanced Raman Scattering of Transition-Metal Electrodes with Confocal Raman Microscopy

Not Accessible

Your library or personal account may give you access

Abstract

Some points on how to improve the detection sensitivity of confocal Raman microscopy for the study of surface-enhanced Raman scattering (SERS) of transition-metal electrodes are discussed, including the careful design of the spectroelectrochemical cell, proper selection of the thickness of the solution layer, the binning of charge-coupled device (CCD) pixels, and appropriate setting of the notch filter. Various roughening methods for the Pt, Rh, Fe, Co, and Ni electrode surfaces have been introduced in order to obtain SERS-active surfaces. It has been shown that the appropriate roughening procedure and the optimizing performance of the confocal Raman microscope are the two most important factors to directly generate and observe SERS on net transition-metal electrodes.

PDF Article
More Like This
Leukemia cells detection based on electroporation assisted surface-enhanced Raman scattering

Yun Yu, Juqiang Lin, Duo Lin, Shangyuan Feng, Weiwei Chen, Zufang Huang, Hao Huang, and Rong Chen
Biomed. Opt. Express 8(9) 4108-4121 (2017)

Ultrasensitive enhanced Raman spectroscopy by hybrid surface-enhanced and interference-enhanced Raman scattering with metal-insulator-metal structures

Kaipeng Liu, Tiancheng Gong, Yunfei Luo, Weijie Kong, Weisheng Yue, Changtao Wang, and Xiangang Luo
Opt. Express 31(10) 15848-15863 (2023)

Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates

Wu Yuan, Ho Pui Ho, Rebecca K. Y. Lee, and Siu Kai Kong
Appl. Opt. 48(22) 4329-4337 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.