Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Estimation of modified Zernike coefficients from turbulence-degraded multispectral imagery using deep learning

Not Accessible

Your library or personal account may give you access

Abstract

We investigate how wavelength diversity affects the performance of a deep-learning model that predicts the modified Zernike coefficients of turbulence-induced wavefront error from multispectral images. The ability to perform accurate predictions of the coefficients from images collected in turbulent conditions has potential applications in image restoration. The source images for this work were a point object and extended objects taken from a character-based dataset, and a wavelength-dependent simulation was developed that applies the effects of isoplanatic atmospheric turbulence to the images. The simulation utilizes a phase screen resampling technique to emulate the simultaneous collection of each band of a multispectral image through the same turbulence realization. Simulated image data were generated for the point and extended objects at various turbulence levels, and a deep neural network architecture based on AlexNet was used to predict the modified Zernike coefficients. Mean squared error results demonstrate a significant improvement in predicting modified Zernike coefficients for both the point object and extended objects as the number of spectral bands is increased. However, the improvement with the number of bands was limited when using extended objects with additive noise.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Deep learning estimation of modified Zernike coefficients and recovery of point spread functions in turbulence

Abu Bucker Siddik, Steven Sandoval, David Voelz, Laura E. Boucheron, and Luis Varela
Opt. Express 31(14) 22903-22913 (2023)

Prediction of wavefront distortion for wavefront sensorless adaptive optics based on deep learning

Yushuang Li, Dan Yue, and Yihao He
Appl. Opt. 61(14) 4168-4176 (2022)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.