Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Temperature-induced spectrum response of volume grating as an effective strategy for holographic sensing in acrylamide polymer part I: sensing

Not Accessible

Your library or personal account may give you access

Abstract

Temperature-induced diffraction spectrum responses of holographic gratings are characterized for exploring the temperature-sensing capability of a holographic sensor. Linear blue shift of peak wavelength and linear diffraction reduction are observed. It provides quantitative expressions for sensing applications. Inorganic nanoparticles are dispersed into the binder to improve sensing properties. Obvious improvement of sensing parameters, including wavelength shift and diffraction change, is confirmed. The sensitivity, response rate, and linear response region of holographic sensors are determined to evaluate sensing capacity. Influence of relative humidity on holographic sensing response is discussed. Expansion of humidity range provides a probability for extending the range of wavelength shift. Finally, the temperature response reversibility of a holographic sensor is evaluated. These experimental results can expand the practical application field of holographic sensing strategy and accelerate the development of holographic sensors.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Temperature-induced spectrum response of a volume grating as an effective strategy for holographic sensing in an acrylamide polymer part II: physical mechanism

Hongpeng Liu, Dan Yu, Ke Zhou, Dongyao Mao, Langbo Liu, Hui Wang, Weibo Wang, and Qinggong Song
Appl. Opt. 55(35) 9917-9924 (2016)

Improvement of temperature-induced spectrum characterization in a holographic sensor based on N-isopropylacrylamide photopolymer hydrogel

Hongpeng Liu, Dan Yu, Ke Zhou, Shichan Wang, Suhua Luo, Weibo Wang, and Qinggong Song
Appl. Opt. 56(32) 9006-9013 (2017)

Holographic humidity response of slanted gratings in moisture-absorbing acrylamide photopolymer

Dan Yu, Hongpeng Liu, Dongyao Mao, Yaohui Geng, Weibo Wang, Liping Sun, and Jiang Lv
Appl. Opt. 54(22) 6804-6812 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.