Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Observation of microscale nonparaxial optical bottle beams

Not Accessible

Your library or personal account may give you access

Abstract

We predict and experimentally observe three-dimensional microscale nonparaxial optical bottle beams based on the generation of a caustic surface under revolution. Such bottle beams exhibit high contrast between the surrounding surface and the effectively void interior. Via caustic engineering, we can precisely control the functional form of the high-intensity surface to achieve microscale bottle beams with longitudinal and transverse dimensions of the same order of magnitude. Although, in general, the phase profile at the input plane can be computed numerically, we find closed-form expressions for bottle beams with various types of surfaces both in the real and in the Fourier space.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Nonparaxial abruptly autofocusing beams

Raluca-Sorina Penciu, Konstantinos G. Makris, and Nikolaos K. Efremidis
Opt. Lett. 41(5) 1042-1045 (2016)

Closed-form expressions for nonparaxial accelerating beams with pre-engineered trajectories

Raluca-Sorina Penciu, Vassilis Paltoglou, and Nikolaos K. Efremidis
Opt. Lett. 40(7) 1444-1447 (2015)

Nonparaxial structured vectorial abruptly autofocusing beam

Shuhe Zhang, Jinhua Zhou, Min-Cheng Zhong, and Lei Gong
Opt. Lett. 44(11) 2843-2846 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.