Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

1.55 μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks

Not Accessible

Your library or personal account may give you access

Abstract

InAs/InAlGaAs quantum dot active layers within microcavity resonators offer the potential of ultra-low-threshold lasing in the 1.55 μm telecom window. Here, we demonstrate the first quantum dot microdisk laser with single-mode emission around 1.55 μm under continuous-wave optical pumping up to 170 K. The extracted threshold is as low as 32 μW at 77 K. This result lays the foundation of an alternative to quantum-well microlasers for low-threshold and highly compact monolithically integratable light emitting sources in fiber communication.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Parametric study of high-performance 1.55 μm InAs quantum dot microdisk lasers on Si

Si Zhu, Bei Shi, Qiang Li, Yating Wan, and Kei May Lau
Opt. Express 25(25) 31281-31293 (2017)

Phosphorus-free 1.5 µm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform

Wen-Qi Wei, Jie-Yin Zhang, Jian-Huan Wang, Hui Cong, Jing-Jing Guo, Zi-Hao Wang, Hong-Xing Xu, Ting Wang, and Jian-Jun Zhang
Opt. Lett. 45(7) 2042-2045 (2020)

Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 1.3  μm

Natalia Kryzhanovskaya, Eduard Moiseev, Yulia Polubavkina, Mikhail Maximov, Marina Kulagina, Sergey Troshkov, Yury Zadiranov, Yulia Guseva, Andrey Lipovskii, Mingchu Tang, Mengya Liao, Jiang Wu, Siming Chen, Huiyun Liu, and Alexey Zhukov
Opt. Lett. 42(17) 3319-3322 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.