Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Contribution of angle-dependent light penetration to electric-field enhancement at nodules in optical coatings

Not Accessible

Your library or personal account may give you access

Abstract

The influence of angle-dependent light penetration on electric-field intensity (EFI) enhancement at nodules was investigated in this Letter. An experiment consisting of 3D finite-difference time-domain simulations was conducted on two types of polarizers that prevent light penetration at a low and a high incident angular range (IAR). The EFI at the focal point region is six times lower, and the laser damage resistance is three times higher in the polarizer blocking light penetration in a high IAR. These results reveal for the first time, to the best of our knowledge, that light penetration at a high IAR, rather than at a low IAR, contributes to EFI enhancement at the focal region of the nodules. Our findings may provide useful guidance in selecting optimal designs to suppress EFI enhancement at nodules in multilayer coatings.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Physical insight toward electric field enhancement at nodular defects in optical coatings

Xinbin Cheng, Abudusalamu Tuniyazi, Zeyong Wei, Jinlong Zhang, Tao Ding, Hongfei Jiao, Bin Ma, Hongqiang Li, Tongbao Li, and Zhanshan Wang
Opt. Express 23(7) 8609-8619 (2015)

Effect of boundary continuity on nanosecond laser damage of nodular defects in high-reflection coatings

Hongping Ma, Xinbin Cheng, Jinlong Zhang, Hongfei Jiao, Bin Ma, Yongjian Tang, Zhouling Wu, and Zhanshan Wang
Opt. Lett. 42(3) 478-481 (2017)

Influence of nodular defects on the laser damage resistance of optical coatings in the femtosecond regime

Laurent Gallais, Xinbin Cheng, and Zhanshan Wang
Opt. Lett. 39(6) 1545-1548 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.