Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Adiabatic second-harmonic generation

Not Accessible

Your library or personal account may give you access

Abstract

Adiabatic three-wave mixing processes enable broadband, efficient, and robust frequency conversion by slowly varying the phase mismatch between the interacting waves along the interaction region. Up until now, this method was mainly used in the case in which one of the waves was undepleted. Here we experimentally study fully nonlinear adiabatic processes by implementation in type I and type II second-harmonic generation processes, where the undepleted pump approximation does not hold. Using quasi-phase-matched interaction in chirped gratings, we obtain conversion efficiency approaching 60% and 80%, with corresponding wide thermal acceptance bandwidths of >100°C and 30°C, respectively. The transition between the depleted and undepleted pump regimes is also studied by varying the input polarization angle in the type II process; thus we also test current theory with arbitrary initial conditions. The results are in excellent agreement with analytic predictions for the fully nonlinear adiabatic process.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Second harmonic generation in graphene-coated nanowires

Yixiao Gao and Ilya V. Shadrivov
Opt. Lett. 41(15) 3623-3626 (2016)

Squeezing in traveling-wave second-harmonic generation

Ruo-Ding Li and Prem Kumar
Opt. Lett. 18(22) 1961-1963 (1993)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved