Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical coherence tractography using intrinsic contrast

Not Accessible

Your library or personal account may give you access

Abstract

Organs such as the heart and brain possess intricate fiber structures that are best characterized with three-dimensional imaging. For instance, diffusion-based, magnetic resonance tractography (MRT) enables studies of connectivity and remodeling during development and disease macroscopically on the millimeter scale. Here we present complementary, high-resolution microscopic optical coherence imaging and analysis methods that, when used in conjunction with clearing techniques, can characterize fiber architecture in intact organs at tissue depths exceeding 1 mm. We anticipate that these techniques can be used to study fiber architecture in situ at microscopic scales not currently accessible to diffusion magentic resonance (MR), and thus, to validate and complement macroscopic structural imaging techniques. Moreover, as these techniques use intrinsic signals and do not require tissue slicing and staining, they can be used for high-throughput, nondestructive evaluation of fiber architecture across large tissue volumes.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Extracting three-dimensional orientation and tractography of myofibers using optical coherence tomography

Yu Gan and Christine P. Fleming
Biomed. Opt. Express 4(10) 2150-2165 (2013)

Optical tractography of the mouse heart using polarization-sensitive optical coherence tomography

Yuanbo Wang and Gang Yao
Biomed. Opt. Express 4(11) 2540-2545 (2013)

Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast

Vivek J. Srinivasan, Harsha Radhakrishnan, James Y. Jiang, Scott Barry, and Alex E. Cable
Opt. Express 20(3) 2220-2239 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved