Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Proposal for in-fiber generation of telecom-band polarization-entangled photon pairs using a periodically poled fiber

Not Accessible

Your library or personal account may give you access

Abstract

We treat spontaneous parametric downconversion in a periodically poled fiber, quasi-phase matched to allow for the generation of photon pairs at wavelengths within the low-loss telecommunications window. For an appropriate pump polarization, the unusual properties of such a fiber’s effective χ(2) result in a biphoton wave function that is symmetric upon simultaneous exchange of downconverted photon frequencies and polarizations and that is nonzero over a wide range of downconverted frequencies. This could lead to a significant technical simplification of sources of in-fiber telecom-band polarization-entangled photons.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Broadband fiber-based entangled photon-pair source at telecom O-band

Changjia Chen, Calvin Xu, Arash Riazi, Eric Y. Zhu, Alexey V. Gladyshev, Peter G. Kazansky, and Li Qian
Opt. Lett. 46(6) 1261-1264 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.