Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical trapping and alignment of single gold nanorods by using plasmon resonances

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate three-dimensional trapping and orientation of individual Au nanorods by using laser light slightly detuned from their longitudinal plasmon mode. Detuning to the long-wavelength side of the resonance allows stable trapping for several minutes, with an exponential dependence of trapping time on laser power (consistent with a Kramer’s escape process). Detuning to the short-wavelength side causes repulsion of the rods from the laser focus. Alignment of the long axis of the rods with the trapping laser polarization is observed as a suppression of rotational diffusion about the short axis.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Plasmon resonance-based optical trapping of single and multiple Au nanoparticles

K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer
Opt. Express 15(19) 12017-12029 (2007)

Optical coherence tomography with plasmon resonant nanorods of gold

Timothy S. Troutman, Jennifer K. Barton, and Marek Romanowski
Opt. Lett. 32(11) 1438-1440 (2007)

Role of interfering optical fields in the trapping and melting of gold nanorods and related clusters

Hai-Dong Deng, Guang-Can Li, Qiao-Feng Dai, Min Ouyang, Sheng Lan, Achanta Venu Gopal, Vyacheslav A. Trofimov, and Tatiana M. Lysak
Opt. Express 20(10) 10963-10970 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved