Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Intracavity-pumped 2.09-μm Ho:YAG laser

Not Accessible

Your library or personal account may give you access

Abstract

The 2.09-μ Ho:YAG 5I75I8 laser transition is intracavity pumped by a Tm:YAG laser. Separate Tm:YAG and Ho:YAG crystals share a single laser cavity, the Tm:YAG crystal is pumped at 785 nm, and the resulting 2.01-μm Tm3+ laser emission pumps the Ho:YAG crystal. The slope efficiency of the 2.09-μm Ho3+ laser output is 42% of the absorbed 785-nm pump power.

© 1992 Optical Society of America

Full Article  |  PDF Article
More Like This
7.3 W of single-frequency output power at 2.09 μm from an Ho:YAG monolithic nonplanar ring laser

Bao-Quan Yao, Xiao-Ming Duan, Dan Fang, Yun-Jun Zhang, Liang Ke, You-Lun Ju, Yue-zhu Wang, and Guang-Jun Zhao
Opt. Lett. 33(18) 2161-2163 (2008)

2-W Ho:YAG laser intracavity pumped by a diode-pumped Tm:YAG laser

C. Bollig, R. A. Hayward, W. A. Clarkson, and D. C. Hanna
Opt. Lett. 23(22) 1757-1759 (1998)

Ho:YAG laser intracavity pumped by a diode-pumped Tm:YLF laser

M. Schellhorn, A. Hirth, and C. Kieleck
Opt. Lett. 28(20) 1933-1935 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved