Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Surface roughness and material-removal rate with magnetorheological finishing without subsurface damage of the surface

Not Accessible

Your library or personal account may give you access

Abstract

A new processing technique called magnetorheological finishing (MRF) is described, based on computer-controlled processing of optical surfaces and combining the features of ordinary processing using free abrasive with the characteristics provided by a polishing wheel and magnetization. Based on theoretical grounds, experiments to determine the material-removal rate on a parabolic mirror have been developed and carried out in order to clarify the influence of the control parameters: the gap between the workpiece and the polishing wheel, the rotation rate of the polishing wheel, the concentration of the volume fraction of nonmagnetic particles, and the polishing time. Experiments have been carried out to study the surface microstructure of the workpiece and the final surface roughness, brought from an initial rms value of 10.98 to 1.22 nm after 20 min of MRF, and this is evidence that the process rapidly reaches the nanometer level. The absence of subsurface damage of the polished surface confirms that the MRF technique is expedient in practice.

PDF Article
More Like This
Prediction of surface roughness and the material removal rate in magnetorheological finishing

Zhifan Lin, Hao Hu, Yifan Dai, Zhong yaoyu, and Shuai xue
Opt. Express 30(26) 46157-46169 (2022)

Removal rate model for magnetorheological finishing of glass

Jessica E. DeGroote, Anne E. Marino, John P. Wilson, Amy L. Bishop, John C. Lambropoulos, and Stephen D. Jacobs
Appl. Opt. 46(32) 7927-7941 (2007)

Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing

Aric B. Shorey, Stephen D. Jacobs, William I. Kordonski, and Roger F. Gans
Appl. Opt. 40(1) 20-33 (2001)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved