Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of the Optical Society of Korea
  • Vol. 17,
  • Issue 1,
  • pp. 68-72
  • (2013)

High Speed SD-OCT System Using GPU Accelerated Mode for in vivo Human Eye Imaging

Open Access Open Access

Abstract

We developed an SD-OCT (Spectral Domain-Optical Coherence Tomography) system which uses a GPU (Graphics Processing Unit) for processing. The image size from the SD-OCT system is 1024 × 512 and the speed is 110 frame/sec in real-time. K-domain linearization, FFT (Fast Fourier Transform), and log scaling were included in the GPU processing. The signal processing speed was about 62 ms using a CPU (Central Processing Unit) and 1.6 ms using a GPU, which is 39 times faster. We performed an in-vivo retinal scan, and reconstructed a 3D visualization based on C-scan images. As a result, there were minimal motion artifacts and we confirmed that tomograms of blood vessels, the optic nerve, and the optic disk are clearly identified. According to the results of this study, this SD-OCT can be applied to real-time 3D display technology, particularly auxiliary instruments for eye operations in ophthalmology.

© 2013 Optical Society of Korea

PDF Article
More Like This
GPU accelerated parallel FFT processing for Fourier transform hyperspectral imaging

Jianping Li and Yi Xiao
Appl. Opt. 54(13) D91-D98 (2015)

Imaging the eye fundus with real-time en-face spectral domain optical coherence tomography

Adrian Bradu and Adrian Gh. Podoleanu
Biomed. Opt. Express 5(4) 1233-1249 (2014)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.