Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Trapping of Rayleigh spheroidal particles by highly focused radially polarized beams

Not Accessible

Your library or personal account may give you access

Abstract

The optical forces and intrinsic optical torque of a highly focused radially polarized beam on a Rayleigh spheroidal particle are calculated with the dipole approximation. Numerical results show that the maximal trapping forces depend strongly on the orientation of the particle, and the torque is always perpendicular to the plane containing the major axis of the spheroid and the optical axis. As a result of optical mechanical and torque equilibrium, the spheroidal particle will stay at the focus with its major axis of the spheroid parallel to the optical axis.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Optical trapping force and torque on spheroidal Rayleigh particles with arbitrary spatial orientations

Manman Li, Shaohui Yan, Baoli Yao, Yansheng Liang, Guoxia Han, and Peng Zhang
J. Opt. Soc. Am. A 33(7) 1341-1347 (2016)

Optical trapping of spheroidal particles in Gaussian beams

Stephen H. Simpson and Simon Hanna
J. Opt. Soc. Am. A 24(2) 430-443 (2007)

Intrinsic optical torque of cylindrical vector beams on Rayleigh absorptive spherical particles

Manman Li, Shaohui Yan, Baoli Yao, Ming Lei, Yanlong Yang, Junwei Min, and Dan Dan
J. Opt. Soc. Am. A 31(8) 1710-1715 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.