Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Macroscopic mechanical oscillators at the quantum limit through optomechanical cooling

Not Accessible

Your library or personal account may give you access

Abstract

We discuss ways in which the optomechanical coupling provided by radiation pressure can be used to cool macroscopic collective degrees of freedom such as the vibrational modes of movable mirrors. Cooling is achieved with a phase-sensitive feedback loop that effectively overdamps a mirror’s motion without increasing the thermal noise. The feedback that results can bring macroscopic objects down to the quantum limit. In particular, it is possible to achieve squeezing and entanglement.

© 2003 Optical Society of America

Full Article  |  PDF Article
More Like This
Light-to-matter entanglement transfer in optomechanics

Eyob A. Sete, H. Eleuch, and C. H. Raymond Ooi
J. Opt. Soc. Am. B 31(11) 2821-2828 (2014)

Cooling mechanical motion via vacuum effect of an ensemble of quantum emitters

Wenjie Nie, Aixi Chen, and Yueheng Lan
Opt. Express 23(24) 30970-30984 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (81)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.