Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Spatially resolving antenna arrays using frequency diversity

Not Accessible

Your library or personal account may give you access

Abstract

Radio imaging devices and synthetic aperture radar typically use either mechanical scanning or phased arrays to illuminate a target with spatially varying radiation patterns. Mechanical scanning is unsuitable for many high-speed imaging applications, and phased arrays contain many active components and are technologically and cost prohibitive at millimeter and terahertz frequencies. We show that antennas deliberately designed to produce many different radiation patterns as the frequency is varied can reduce the number of active components necessary while still capturing high-quality images. This approach, called frequency-diversity imaging, can capture an entire two-dimensional image using only a single transmit and receive antenna with broadband illumination. We provide simple principles that ascertain whether a design is likely to achieve particular resolution specifications, and illustrate these principles with simulations.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Cavity-backed metasurface antennas and their application to frequency diversity imaging

Daniel L. Marks, Okan Yurduseven, and David R. Smith
J. Opt. Soc. Am. A 34(4) 472-480 (2017)

Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures

Okan Yurduseven, Jonah N. Gollub, Daniel L. Marks, and David R. Smith
Opt. Express 24(8) 8907-8925 (2016)

Mode diversity of weakly modulated cavity antennas

Daniel L. Marks and David R. Smith
J. Opt. Soc. Am. A 35(1) 135-147 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (43)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved