Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Discretization of continuous convolution operators for accurate modeling of wave propagation in digital holography

Not Accessible

Your library or personal account may give you access

Abstract

Discretization of continuous (analog) convolution operators by direct sampling of the convolution kernel and use of fast Fourier transforms is highly efficient. However, it assumes the input and output signals are band-limited, a condition rarely met in practice, where signals have finite support or abrupt edges and sampling is nonideal. Here, we propose to approximate signals in analog, shift-invariant function spaces, which do not need to be band-limited, resulting in discrete coefficients for which we derive discrete convolution kernels that accurately model the analog convolution operator while taking into account nonideal sampling devices (such as finite fill-factor cameras). This approach retains the efficiency of direct sampling but not its limiting assumption. We propose fast forward and inverse algorithms that handle finite-length, periodic, and mirror-symmetric signals with rational sampling rates. We provide explicit convolution kernels for computing coherent wave propagation in the context of digital holography. When compared to band-limited methods in simulations, our method leads to fewer reconstruction artifacts when signals have sharp edges or when using nonideal sampling devices.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Exact complex-wave reconstruction in digital holography

Chandra Sekhar Seelamantula, Nicolas Pavillon, Christian Depeursinge, and Michael Unser
J. Opt. Soc. Am. A 28(6) 983-992 (2011)

Analysis of numerical diffraction calculation methods: from the perspective of phase space optics and the sampling theorem

Wenhui Zhang, Hao Zhang, Colin J. R. Sheppard, and Guofan Jin
J. Opt. Soc. Am. A 37(11) 1748-1766 (2020)

Fast numerical algorithm for the linear canonical transform

Bryan M. Hennelly and John T. Sheridan
J. Opt. Soc. Am. A 22(5) 928-937 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (54)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.