Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Phasing diffraction data from a stream of hydrated proteins

Not Accessible

Your library or personal account may give you access

Abstract

We consider the problem of phase determination for continuous diffraction patterns obtained from a beam of identical, aligned large molecules (such as proteins), each coated with a layer of water or vitreous ice. Many laser-aligned molecules are assumed to lie within a wide continuous x-ray beam at any instant. An iterative phasing method is developed to extract the common target structure in three dimensions from diffraction patterns of these doped ice balls. Several measurements of the diffraction intensity in reciprocal space are needed. We found iteratively two boundaries (supports) (between protein and ice and the outer iceball support) by using the charge-flipping and multiple hybrid input–output algorithms, working with multiple sets of measured data. The approach is applied to simulated data from hydrated lysozyme proteins generated by the serial crystallography method of laser-aligned protein-beam diffraction proposed by Spence and Doak [Phys. Rev. Lett. 92, 198102 (2004) ]. We consider also the effect of empty ice balls on the patterns. The algorithm can also be used to align images with different randomly chosen origins, so that the same embedded subunits overlap.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Tomographic diffractive imaging of monolayer crystals at atomic resolution with one-dimensional compact support

U. Weierstall, J. Spence, and G. Hembree
Opt. Express 11(19) 2335-2343 (2003)

Iterative phase retrieval without support

J. S. Wu, U. Weierstall, J. C. H. Spence, and C. T. Koch
Opt. Lett. 29(23) 2737-2739 (2004)

Phase retrieval from single biomolecule diffraction pattern

Shiro Ikeda and Hidetoshi Kono
Opt. Express 20(4) 3375-3387 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved