Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate

Not Accessible

Your library or personal account may give you access

Abstract

We deduce and study an analytical expression for Fresnel diffraction of a plane wave by a spiral phase plate (SPP) that imparts an arbitrary-order phase singularity on the light field. Estimates for the optical vortex radius that depends on the singularity’s integer order n (also termed topological charge, or order of the dislocation) have been derived. The near-zero vortex intensity is shown to be proportional to ρ2n, where ρ is the radial coordinate. Also, an analytical expression for Fresnel diffraction of the Gaussian beam by a SPP with nth-order singularity is analyzed. The far-field intensity distribution is derived. The radius of maximal intensity is shown to depend on the singularity number. The behavior of the Gaussian beam intensity after a SPP with second-order singularity (n=2) is studied in more detail. The parameters of the light beams generated numerically with the Fresnel transform and via analytical formulas are in good agreement. In addition, the light fields with first- and second-order singularities were generated by a 32-level SPP fabricated on the resist by use of the electron-beam lithography technique.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Diffraction of conic and Gaussian beams by a spiral phase plate

Victor V. Kotlyar, Alexey A. Kovalev, Svetlana N. Khonina, Roman V. Skidanov, Victor A. Soifer, Henna Elfstrom, Noora Tossavainen, and Jari Turunen
Appl. Opt. 45(12) 2656-2665 (2006)

Diffraction of a finite-radius plane wave and a Gaussian beam by a helical axicon and a spiral phase plate

Victor V. Kotlyar, Alexey A. Kovalev, Roman V. Skidanov, Oleg Yu. Moiseev, and Victor A. Soifer
J. Opt. Soc. Am. A 24(7) 1955-1964 (2007)

Fresnel and Fraunhofer diffraction of a Gaussian laser beam by fork-shaped gratings

Ljiljana Janicijevic and Suzana Topuzoski
J. Opt. Soc. Am. A 25(11) 2659-2669 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (83)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved