Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Off-diagonal Mueller matrix elements in backscattering from highly diffusive media

Not Accessible

Your library or personal account may give you access

Abstract

Measurements of a reduced Mueller matrix in backscattering from highly diffusive, dielectric samples are reported as a function of the angle of incidence. It was found that the off-diagonal terms depend greatly on the angle of incidence, increasing to a maximum near grazing incidence. We show that, despite a significant scattering originating in the bulk of such diffusive media, the nontrivial behavior of the off-diagonal Muller matrix is primarily due to surface scattering phenomena. The experimental data can be simply explained by assuming a random orientation of small particles and considering only double scattering in the plane of the surface.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media

Sebastian Bartel and Andreas H. Hielscher
Appl. Opt. 39(10) 1580-1588 (2000)

Diffuse backscattering Mueller matrices of highly scattering media

Andreas H. Hielscher, Angelia A. Eick, Judith R. Mourant, Dan Shen, James P. Freyer, and Irving J. Bigio
Opt. Express 1(13) 441-453 (1997)

Characterization of backscattering Mueller matrix patterns of highly scattering media with triple scattering assumption

Yong Deng, Shaoqun Zeng, Qiang Lu, Dan zhu, and Qingming Luo
Opt. Express 15(15) 9672-9680 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved