Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Generalized optimum receiver for pattern recognition with multiplicative, additive, and nonoverlapping background noise

Not Accessible

Your library or personal account may give you access

Abstract

We design an optimum receiver to detect a pattern or a reference signal. We design a receiver that detects the signal distorted by a multiplicative noise on the signal itself, as well as by additive noise and by nonoverlapping scene noise. We design the optimum receiver under the condition in which the statistics of the multiplicative and nonoverlapping scene noise are not available. In the case in which additive noise is present and the statistics of the multiplicative noise are not known, the usual method of maximizing the likelihood function to estimate the statistics of stationary noise fails. We overcome this problem by viewing the noise processes as vector random variables and describe two different schemes to estimate the statistics of the multiplicative noise. Using computer simulations we show that, for the images tested here, the optimum receiver performs better than some of the existing receivers.

© 1998 Optical Society of America

Full Article  |  PDF Article
More Like This
Optimum receivers for pattern recognition in the presence of Gaussian noise with unknown statistics

Nasser Towghi and Bahram Javidi
J. Opt. Soc. Am. A 18(8) 1844-1852 (2001)

Image recognition in the presence of non-Gaussian noise with unknown statistics

Nasser Towghi and Bahram Javidi
J. Opt. Soc. Am. A 18(11) 2744-2753 (2001)

Performance of an optimum receiver designed for pattern recognition with nonoverlapping target and scene noise

Bahram Javidi, Amir Fazlollahi, Peter Willett, and Philippe Réfrégier
Appl. Opt. 34(20) 3858-3868 (1995)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (48)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.