Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings

Not Accessible

Your library or personal account may give you access

Abstract

The rigorous coupled-wave analysis technique for describing the diffraction of electromagnetic waves by periodic grating structures is reviewed. Formulations for a stable and efficient numerical implementation of the analysis technique are presented for one-dimensional binary gratings for both TE and TM polarization and for the general case of conical diffraction. It is shown that by exploitation of the symmetry of the diffraction problem a very efficient formulation, with up to an order-of-magnitude improvement in the numerical efficiency, is produced. The rigorous coupled-wave analysis is shown to be inherently stable. The sources of potential numerical problems associated with underflow and overflow, inherent in digital calculations, are presented. A formulation that anticipates and preempts these instability problems is presented. The calculated diffraction efficiencies for dielectric gratings are shown to converge to the correct value with an increasing number of space harmonics over a wide range of parameters, including very deep gratings. The effect of the number of harmonics on the convergence of the diffraction efficiencies is investigated. More field harmonics are shown to be required for the convergence of gratings with larger grating periods, deeper gratings, TM polarization, and conical diffraction.

© 1995 Optical Society of America

Full Article  |  PDF Article
More Like This
Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach

M. G. Moharam, Drew A. Pommet, Eric B. Grann, and T. K. Gaylord
J. Opt. Soc. Am. A 12(5) 1077-1086 (1995)

Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings

Song Peng and G. Michael Morris
J. Opt. Soc. Am. A 12(5) 1087-1096 (1995)

Formulation of rigorous coupled-wave theory for gratings in bianisotropic media

Michihisa Onishi, Karlton Crabtree, and Russell A. Chipman
J. Opt. Soc. Am. A 28(8) 1747-1758 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (80)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved