Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Multicoated gratings: a differential formalism applicable in the entire optical region

Not Accessible

Your library or personal account may give you access

Abstract

We present a new formalism for the diffraction of an electromagnetic plane wave by a multicoated grating. Its basic feature lies in the use of a coordinate system that maps all the interfaces onto parallel planes. Using Maxwell’s equations in this new system leads to a linear system of differential equations with constant coefficients whose solution is obtained through the calculation of the eigenvalues and eigenvectors of a matrix in each medium. Through classical criteria, our numerical results have been found generally to be accurate to within 1%. The serious numerical difficulties encountered by the previous differential formalism for highly conducting metallic gratings completely disappear, whatever the optical region. Furthermore, our computer code provides accurate results for metallic gratings covered by many modulated dielectric coatings or for highly modulated gratings. We give two kinds of applications. The first concerns the use of dielectric coatings on a modulated metallic substrate to minimize the absorption of energy. Conversely, the second describes the use of highly modulated metallic gratings to increase this absorption.

© 1982 Optical Society of America

Full Article  |  PDF Article
More Like This
Variational theory of diffraction gratings and its application to the study of ghosts

M. Breidne and D. Maystre
J. Opt. Soc. Am. 72(4) 499-506 (1982)

Diffraction analysis of dielectric surface-relief gratings

M. G. Moharam and T. K. Gaylord
J. Opt. Soc. Am. 72(10) 1385-1392 (1982)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (49)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved