Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Surface energy transfer enhanced by optical cavity excitation: a pole analysis

Not Accessible

Your library or personal account may give you access

Abstract

We discuss an enhancement-of-energy transfer phenomenon that involves the absorption of a photon and takes place in thin surface layers. The enhancement is effected by the resonant excitation of a waveguide mode in the substrate onto which the layer is adsorbed. The system is studied with a pole analysis, allowing the crucial parameters to be identified and physically interpreted. Complete absorption is possible, and a significant enhancement in the photo yield of a photocathode surface layer is calculated. The energy exchange with finite-size incident beams is considered, leading to the conclusion that the device should be highly sensitive to surface layers approaching a monolayer or less in thickness.

© 1982 Optical Society of America

Full Article  |  PDF Article
More Like This
Diffraction analysis of dielectric surface-relief gratings

M. G. Moharam and T. K. Gaylord
J. Opt. Soc. Am. 72(10) 1385-1392 (1982)

Statistical ray optics

Eli Yablonovitch
J. Opt. Soc. Am. 72(7) 899-907 (1982)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (53)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.