Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

A subjective method for the measurement of monochromatic aberrations of the eye

Not Accessible

Your library or personal account may give you access

Abstract

We have designed an aberroscope that differs from Tscherning’s classical instrument in that it makes use of an artificial astigmatism rather than an artificial myopia to defocus the image of a point source of light. A subject views the source through a ±5 D crossed cylinder lens with axes at 45° to the principal axes of an intercalated grid and sees a shadow image of the grid. The distortions of this grid image are quantitatively related to the wave aberration of the eye. Using this device we have obtained drawings for more than 50 subjects. These drawings of the grid pattern have been analyzed by means of a two-dimensional polynomial curve Fitting technique that computes Taylor polynomial terms to the fourth order. From the Taylor coefficients it is possible to reconstruct the wave aberration surface. Examination of the Taylor terms so obtained shows that the monochromatic aberrations of the eye are dominated by third-order Taylor terms within the range of physiological pupil sizes, and that spherical aberration frequently appears predominantly about one axis only, a condition that we have termed “cylindrical” aberration. We have computed the optical MTF of our subjects’ eyes and find that the role of aberrations in degrading the MTF may be greater than generally believed.

© 1977 Optical Society of America

Full Article  |  PDF Article
More Like This
Objective technique for the determination of monochromatic aberrations of the human eye

G. Walsh, W. N. Charman, and H. C. Howland
J. Opt. Soc. Am. A 1(9) 987-992 (1984)

Monochromatic aberrations of the human eye in a large population

Jason Porter, Antonio Guirao, Ian G. Cox, and David R. Williams
J. Opt. Soc. Am. A 18(8) 1793-1803 (2001)

Effect of aging on the monochromatic aberrations of the human eye

Richard I. Calver, Michael J. Cox, and David B. Elliott
J. Opt. Soc. Am. A 16(9) 2069-2078 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved