Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Near Infrared Spectroscopy
  • Vol. 21,
  • Issue 5,
  • pp. 351-357
  • (2013)

Separating the Effects of Scatter and Absorption Using the Representative Layer

Not Accessible

Your library or personal account may give you access

Abstract

The physical interpretation of the absorbance observed in a non-scattering sample is straightforward; it is a simple function of the concentration of the analyte(s) and its (their) ability to absorb light. In a scattering sample, the phenomena of absorption and scattering affect each other. Consequently, the measured “absorbance” is more difficult to interpret and is not suitable for direct comparison to an “absorbance” obtained from a non-scattering sample. This paper describes a strategy for separating the effects of scatter and absorption. The amount of light absorbed by a sample can be determined by measuring both the amount of light remitted and the amount transmitted by the sample. Using the mathematics of plane parallel layers, it is possible to model the sample as a series of “layers” of any thickness and calculate the absorption, remission and transmission for each of these hypothetical layers. The absorption computed for a layer having a thickness of one particle, which we term the “representative layer”, can be used to benchmark the absorbance that would be observed from the sample in the absence of scatter.

© 2013 IM Publications LLP

PDF Article
More Like This
Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy

Manu Sharma, Ricky Hennessy, Mia K. Markey, and James W. Tunnell
Biomed. Opt. Express 5(1) 40-53 (2014)

Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm

Chenyang Xu, Daniel L. Marks, Minh N. Do, and Stephen A. Boppart
Opt. Express 12(20) 4790-4802 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.