Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 26,
  • Issue 1,
  • pp. 158-167
  • (2008)

Electronic Dispersion Compensation

Not Accessible

Your library or personal account may give you access

Abstract

The performance of different electronic equalization and processing schemes for 40- and 10-Gb/s optical transmission over single-mode fiber (SMF) are discussed, from the point of their ability to compensate chromatic dispersion (CD) and polarization mode dispersion (PMD). In addition, the impact of fiber nonlinearity and modulation format on equalization is also investigated. The main objective of this paper is to present an overview and a comparison of the performances rather than a detailed explanation of the principles of the different equalization schemes. The equalizers which will be covered are analog equalizer (feedforward and decision feedback type), maximum likelihood sequence estimator (MLSE), electronic precompensation, coherent/intradyne detection with digital signal processing (DSP) equalization, DSP-based optical orthogonal frequency division multiplexing (OFDM), and turbo equalization.

© 2008 IEEE

PDF Article
More Like This
10.7 Gb/s electronic predistortion transmitter using commercial FPGAs and D/A converters implementing real-time DSP for chromatic dispersion and SPM compensation

Robert Waegemans, Stefan Herbst, Ludwig Holbein, Philip Watts, Polina Bayvel, Cornelius Fürst, and Robert I. Killey
Opt. Express 17(10) 8630-8640 (2009)

Chromatic dispersion and PMD mitigation at 10 Gb/s using Viterbi equalization for DPSK and DQPSK modulation formats

Wei Chen, Fred Buchali, Xingwen Yi, William Shieh, Jamie S. Evans, and Rodney S. Tucker
Opt. Express 15(9) 5271-5276 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.