Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 14,
  • Issue 1,
  • pp. 011901-
  • (2016)

Low threshold Raman effect in high power narrowband fiber amplifier

Not Accessible

Your library or personal account may give you access

Abstract

A low-threshold Raman effect in a kilowatt ytterbium-doped narrowband fiber amplifier system is reported. The Raman Stokes light at 1120 nm is achieved with the total output power of only ∼400 W, indicating that the Raman threshold of this kilowatt codirectional pumped continuous wave fiber amplifier is much lower than the predicted value estimated by the classic formula. To figure out the mechanism of this phenomenon, simulations based on the general stimulated Raman scattering (SRS) model are analyzed indicating that the key factor is the coupling between four-wave mixing (FWM) and SRS. The simulation results are in good agreement with our experiments.

© 2015 Chinese Laser Press

PDF Article
More Like This
Effects of four-wave-mixing in high-power Raman fiber amplifiers

Wei Liu, Pengfei Ma, Pu Zhou, and Zongfu Jiang
Opt. Express 28(1) 593-606 (2020)

Suppression of stimulated Raman scattering in a high-power fiber amplifier by inserting long transmission fibers in a seed laser

Tenglong Li, Weiwei Ke, Yi Ma, Yinhong Sun, and Qingsong Gao
J. Opt. Soc. Am. B 36(6) 1457-1465 (2019)

Pulse-to-pulse wavelength switching of a nanosecond fiber laser by four-wave mixing seeded stimulated Raman amplification

Matthias Eibl, Sebastian Karpf, Hubertus Hakert, Torben Blömker, Jan Philip Kolb, Christian Jirauschek, and Robert Huber
Opt. Lett. 42(21) 4406-4409 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.