Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 60,
  • Issue 3,
  • pp. 266-271
  • (2006)

Characterization of a Mid-Infrared Hollow Waveguide Gas Cell for the Analysis of Carbon Monoxide and Nitric Oxide

Not Accessible

Your library or personal account may give you access

Abstract

Infrared spectroscopy is commonly applied to the analysis of small gas-phase molecules. One of the limitations of using Fourier transform infrared (FT-IR) spectroscopy for these applications is the time response of long path length gas cells. Hollow waveguides (HW) that transmit in the mid-infrared spectral range have higher optical efficiencies compared to long path length cells due to smaller cell volumes. This study characterizes a silver coated, 2 mm inner diameter HW for the analysis of carbon monoxide (CO) and nitric oxide (NO) and compares the performance to a 3 m gas cell and traditional gas analyzers. The HW was found to have a CO response time less than the NDIR analyzer and approximately one-tenth of the response time on the FT-IR system equipped with a 3 m gas cell. The utility of the increased response time was demonstrated by measuring CO concentrations in sidestream cigarette smoke at the same temporal resolution as an NDIR analyzer. A 10 to 60% increase in sensitivity using various frequencies for both CO and NO was observed using the HW compared to the 3 m multipass gas cell. However, cost savings for gas-sensing applications can be achieved on a per analyte basis by using FT-IR spectroscopy, especially in combination with a HW gas-sensing module, which is significantly less expensive than a multipass gas cell.

PDF Article
More Like This
Low-level and ultralow-volume hollow waveguide based carbon monoxide sensor

Jia Chen, Andreas Hangauer, Rainer Strzoda, Maximilian Fleischer, and Markus-Christian Amann
Opt. Lett. 35(21) 3577-3579 (2010)

ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes

Ramin Ghorbani and Florian M. Schmidt
Opt. Express 25(11) 12743-12752 (2017)

Low-volume, fast response-time hollow silica waveguide gas cells for mid-IR spectroscopy

Daniel Francis, Jane Hodgkinson, Beth Livingstone, Paul Black, and Ralph P. Tatam
Appl. Opt. 55(25) 6797-6806 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.