Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 59,
  • Issue 9,
  • pp. 1174-1181
  • (2005)

Fluorescence Lifetime Imaging and Fourier Transform Infrared Spectroscopy of Michelangelo's David

Not Accessible

Your library or personal account may give you access

Abstract

We developed a combined procedure for the analysis of works of art based on a portable system for fluorescence imaging integrated with analytical measurements on microsamples. The method allows us to localize and identify organic and inorganic compounds present on the surface of artworks. The fluorescence apparatus measures the temporal and spectral features of the fluorescence emission, excited by ultraviolet (UV) laser pulses. The kinetic of the emission is studied through a fluorescence lifetime imaging system, while an optical multichannel analyzer measures the fluorescence spectra of selected points. The chemical characterization of the compounds present on the artistic surfaces is then performed by means of analytical measurements on microsamples collected with the assistance of the fluorescence maps. The previous concepts have been successfully applied to study the contaminants on the surface of Michelangelo's <i>David</i>. The fluorescence analysis combined with Fourier transform infrared (FT-IR) measurements revealed the presence of beeswax, which permeates most of the statue surface, and calcium oxalate deposits mainly arranged in vertical patterns and related to rain washing.

PDF Article
More Like This
Fluorescence lifetime imaging and spectroscopy as tools for nondestructive analysis of works of art

Daniela Comelli, Cosimo D’Andrea, Gianluca Valentini, Rinaldo Cubeddu, Chiara Colombo, and Lucia Toniolo
Appl. Opt. 43(10) 2175-2183 (2004)

Hadamard-transform fluorescence-lifetime imaging

Takahiko Mizuno and Tetsuo Iwata
Opt. Express 24(8) 8202-8213 (2016)

Fourier transform infrared spectroscopy microscopic imaging classification based on multifractal methods

Lian Liu, Xiukun Yang, and Xiaojun Jing
Appl. Opt. 56(6) 1689-1700 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.