Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 54,
  • Issue 5,
  • pp. 651-658
  • (2000)

Investigations into Trace Detection of Nitrocompounds by One- and Two-Color Laser Photofragmentation/Fragment Detection Spectrometry

Not Accessible

Your library or personal account may give you access

Abstract

Trace concentrations of nitrogen dioxide (NO<sub>2</sub>), nitromethane (CH<sub>3</sub>NO<sub>2</sub>), and 2,4,6-trinitrotoluene (TNT) are detected by both one- and two-color laser photofragmentation/fragment detection (PF/FD) spectrometry using one or two lasers. The PF/FD methods studied are (1) one-laser, one-color photofragmentation of the analyte molecule at 227 or 454 nm with subsequent detection of the characteristic nitric oxide (NO) photofragment by one- or two-photon laser-induced fluorescence using its A<sup>2</sup>Σ<sup>+</sup> - Χ<sup>2</sup>Π(0,0) transitions near 227 nm; (2) one-laser, two-color PF/FD, where a 355 nm laser beam is used for additional analyte photofragmentation and NO is detected by both one- and two-photon LIF as in the previous case; (3) two-laser, two-color PF/FD, where the pump and probe beams are time delayed; and (4) one-laser, one-color PF/FD at 355 nm, where the 355 nm beam photofragments the target molecule and the prompt emission from electronically excited NO (A<sup>2</sup>Σ<sup>+</sup>) is monitored in the range of 200-300 nm. PF/FD excitation and emission spectra are recorded and also simulated with the use of a computer program based on a Boltzmann distribution analysis with transition probabilities, rotational energies, and rovibrational temperatures as input parameters. The effects of laser wavelength, laser pump energy, time delay between pump and probe beams, and analyte concentration on PF/FD signal are investigated and reported. Limits of detection [signal-to-noise (S/N) = 3] for the nitrocompounds range from low ppb<sub>v</sub> to ppm<sub>v</sub> for 10 s integration time and laser energies of ~ 5 mJ and 100 μJ for the pump and probe beams, respectively. These results are presented and compared to other PF/FD methods for nitrocompound monitoring.

PDF Article
More Like This
Laser photofragmentation–fragment detection and pyrolysis–laser-induced fluorescence studies on energetic materials

Vaidhianat Swayambunathan, Gurbax Singh, and Rosario C. Sausa
Appl. Opt. 38(30) 6447-6454 (1999)

Photofragmentation-laser induced fluorescence: a new method for detecting atmospheric trace gases

M. O. Rodgers, K. Asai, and D. D. Davis
Appl. Opt. 19(21) 3597-3605 (1980)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.