Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 51,
  • Issue 11,
  • pp. 1722-1729
  • (1997)

Dielectric Stack Filters for Ex Situ and In Situ UV Optical-Fiber Probe Raman Spectroscopic Measurements

Not Accessible

Your library or personal account may give you access

Abstract

Dielectric stack interference filters can be used in conjunction with a high-throughput single-stage spectrograph to facilitate the measurement of high signal-to-noise (S/N) ultraviolet (UV) Raman spectra with 228.9-nm and 244-nm excitation wavelengths. Placed between the sample and the spectrograph, these filters reflect Rayleigh scattering while transmitting Stokes-shifted Raman scattering. We have measured UV Raman bands from solid, highly scattering samples down to a 290-cm -1 shift from the Rayleigh line. The high throughput of the filtered single-stage spectrograph enables the measurement of UV Raman spectra from photo-labile samples, including DNA and the energetic materials pentaerythritol tetranitrate (PETN) and trinitrotoluene (TNT), with sufficiently low excitation powers and short accumulation times to minimize photo-alteration. High S/N UV preresonance and resonance Raman are obtained for PETN and TNT within 1 s, indicating the possible application of UV Raman spectroscopy as a rapid, highly selective screening methodology for the detection of trace levels of contraband explosives. Furthermore, the incorporation of these dielectric filters within a UV optical-fiber Raman probe head provides simultaneous Rayleigh rejection and removal of background silica Raman scattering. With the use of a 244-nm UV optical-fiber probe, we measured Raman spectra from 100 nM to 10 mu M concentrations of polycyclic aromatic hydrocarbon (PAH) in water, even in the presence of an equimolar concentration of the visible fluorophore rhodamine 6G (R6G). Thus, we demonstrate the potential of UV Raman optical-fiber probes for minimally invasive in situ real-time monitoring at low analyte concentrations and within environments in which fluorescence backgrounds would prevent measurements with visible Raman optical-fiber probes.

PDF Article
More Like This
Fiber-optic probes with improved excitation and collection efficiency for deep-UV Raman and resonance Raman spectroscopy

L. Shane Greek, H. Georg Schulze, Michael W. Blades, Charles A. Haynes, Karl-Friedrich Klein, and Robin F. B. Turner
Appl. Opt. 37(1) 170-180 (1998)

Detection of condensed-phase explosives via laser-induced vaporization, photodissociation, and resonant excitation

C. M. Wynn, S. Palmacci, R. R. Kunz, K. Clow, and M. Rothschild
Appl. Opt. 47(31) 5767-5776 (2008)

Micro-optical fiber probe for use in an intravascular Raman endoscope

Yuichi Komachi, Hidetoshi Sato, Katsuo Aizawa, and Hideo Tashiro
Appl. Opt. 44(22) 4722-4732 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.